NABS: non-local automatic brain hemisphere segmentation
نویسندگان
چکیده
منابع مشابه
NABS: non-local automatic brain hemisphere segmentation.
In this paper, we propose an automatic method to segment the five main brain sub-regions (i.e. left/right hemispheres, left/right cerebellum and brainstem) from magnetic resonance images. The proposed method uses a library of pre-labeled brain images in a stereotactic space in combination with a non-local label fusion scheme for segmentation. The main novelty of the proposed method is the use o...
متن کاملSignaling Local Non-credibility in an Automatic Segmentation Pipeline
The advancing technology for automatic segmentation of medical images should be accompanied by techniques to inform the user of the local credibility of results. To the extent that this technology produces clinically acceptable segmentations for a significant fraction of cases, there is a risk that the clinician will assume every result is acceptable. In the less frequent case where segmentatio...
متن کاملAutomatic brain tumor segmentation
This thesis addresses the task of automatically segmenting brain tumors and edema in magnetic resonance images. This is motivated by potential applications in assessing tumor growth, assessing treatment responses, enhancing computer-assisted surgery, planning radiation therapy, and constructing tumor growth models. The presented framework forms an image processing pipeline, consisting of noise ...
متن کاملImpact of Non-local Means filtering on Brain Tissue Segmentation
A wide number of magnetic resonance imaging (MRI) analysis techniques rely on brain tissue segmentation. Automated and reliable tissue classification is a challenging task as the intensity of the data typically does not allow a clear delimitation of the different tissue types because of partial volume effects, image noise and intensity non-uniformities caused by magnetic field inhomogeneities. ...
متن کاملAn Brain Image Segmentation Method based on Non-local MRF
Brain image segmentation is one of the most important parts of clinical diagnostic tools. However, accurate segmentation of brain images is a very difficult task due to the noise, inhomogeneity and sometimes deviation in brain images. Wells model incorporates the brain image segmentation and inhomogeneity correction into one framework to overcome influences from the intensity inhomogeneity and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Magnetic Resonance Imaging
سال: 2015
ISSN: 0730-725X
DOI: 10.1016/j.mri.2015.02.005